- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0010000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Lian, Carl (2)
-
Cheng, Raymond (1)
-
Greer, François (1)
-
Murayama, Takumi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
Belmans, Pieter (1)
-
Ho, Wei (1)
-
de_Jong, Aise Johan (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We consider the generating series of special cycles on , with full level structure, valued in the cohomology of degree . The modularity theorem of Kudla–Millson for locally symmetric spaces implies that these series are modular. When , the images of these loci in are the ‐elliptic Noether–Lefschetz loci, which are conjectured to be modular. In the Appendix, it is shown that the resulting modular forms are nonzero for when and .more » « less
-
Cheng, Raymond; Lian, Carl; Murayama, Takumi (, Cambridge University Press)Belmans, Pieter; Ho, Wei; de_Jong, Aise Johan (Ed.)In this expository paper, we show that the Deligne–Mumford moduli space of stable curves is projective over Spec(Z). The proof we present is due to Kollár. Ampleness of a line bundle is deduced from the nefness of a related vector bundle via the ampleness lemma, a classifying map construction. The main positivity result concerns the pushforward of relative dualizing sheaves on families of stable curves over a smooth projective curve.more » « less
An official website of the United States government
